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Abstract 

In this article, Rayleigh-Bénard convection for nanofluids for more realistic boundary conditions (rigid-free and rigid-

rigid) under the influence of the magnetic field is investigated.  Presence of nanoparticles in base fluid has introduced 

one additional conservation equation of nanoparticles that incorporates the effect of thermophoretic forces and 

Brownian motion and the inclusion of magnetic field has introduced Lorentz’s force term in the momentum equation 

along with Maxwell’s equations. The solution of the Eigen value problem is found in terms of Rayleigh number by 

implementing the technique of normal modes and weighted residual Galerkin approximation. It is found that the 

stationary as well as oscillatory motions come into existence and heat transfer takes place through oscillatory motions. 

The critical Rayleigh number for alumina water nanofluid has an appreciable increase in its value with the rise in 

Chandrasekhar number and it increases moderately as we move from rigid-free to both rigid boundaries. The effect of 

different nanofluid parameters on the onset of thermal convection for two types of boundaries is investigated.  

 

Keywords- Darcy’s law, Brownian motion, Magneto-convection, Chandrasekhar number. 

 

 

 

1. Introduction 
The thermal instability of a fluid layer in a porous medium has emerged as an evident problem 

considering its widespread usage across various utility applications such as enhanced oil 

recovery, storage of agricultural products, geothermal reservoirs and the underground pollutant 

transport. For Newtonian fluids, a comprehensive work on the problem of Rayleigh-Bénard 

convection has been done (Chandrasekhar, 1981) while considering different aspects of 

hydrodynamics and hydromagnetics. Nanofluid is a very prominent and significant term which is 

being highly discussed over a broad spectrum considering it's relevance and usage. A nanofluid is 

basically a fluid that is formed by suspending particles of nano-sized such as ceramics, metals, 

oxides, nitrides, and semiconductors in base fluids like water, ethylene glycol, oil etc. The 

usefulness of these suspensions is also revealed in the study (Choi, 1995) which also emphasizes 

the importance of nanofulids in enhancing the heat transfer mechanism because of exhibiting 

enormously high thermal conductivity. In continuation, other researchers (Das et al., 2003; 

Masuda et al., 1993) confirmed the same results through their experimental work. Due to 

enhanced thermal properties, it is now used in nuclear power plants (Buongiorno and Hu, 2005) 

and in delivering drugs (Kleinstreuer et al., 2008). Further, convective instability of nanofluids is 

considered (Kim et al., 2004) and have shown that the onset of convection is hastened due to the 
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enhanced thermal conductivity of nanoparticles. (Buongiorno, 2006) suggested a model using the 

mechanics of nanoparticles and included the effects due to Brownian motion and thermophoretic 

diffusion. Buongiorno’s model was utilized to analyze the thermal instability problems by many 

others (Tzou, 2008; Nield and Kuznetsov, 2009; Nield and Kuznetsov, 2010). In the past, the 

modified problem of thermal convection (Bhadauria and Agarwal, 2011; Yadav et al., 2011) is 

considered to include the impact of rotation. 

 

Magneto-convection refers to the thermal convection under the effect of the applied magnetic 

field. According to the experimental results, (Heris et al., 2012) the nanoparticles concentration 

and the strong magnetic field increase the thermal efficiency of thermosyphon considerably. The 

impact of applied magnetic field/Hall currents on a layer of nanofluid has been studied (Gupta et 

al., 2013; 2014) and they have shown that the critical Rayleigh number along with critical wave 

number undergoes an appreciable rise with the rise in magnetic field parameter and considerable 

fall with the rise in Hall parameter.  The authors considered the convection problem for the case 

of free-free boundaries, which are not realistic for the case of geophysical situations. The present 

formulation of the thermal convection problem introduces the impact of permeability and vertical 

magnetic field using the Darcy model for a porous medium for two types of boundaries: both-

rigid and rigid-free. The Rayleigh number at which the instability sets in for alumina-water 

nanofluid has been identified under different boundaries. The problem has great application in 

geophysics due to the high magnetic field of the earth, its porous structure and owing to more 

realistic boundary conditions.  

 

 

 

2. Conservation Equations using Darcy Model 
In a homogenous porous medium, a thin layer of nanofluid (heated from below) is considered. 

Temperature and volume fraction of nanoparticles are Th and 
1  at the lower boundary ( 0z  ); 

and at the upper boundary ( z = d ) is 
cT and

0 1 0( , )h cT T    as in Figure1. The gravitational 

force (0,0, )g g and the magnetic field (0,0,H)H  are acting in the opposite directions. In the 

porous medium Darcy model (Nield and Kuznetsov, 2009) is incorporated to analyze the stability 

of the system. The Darcy velocity is denoted by ‘ Dv ’ i.e. D v q  where q is the velocity of 

nanofluid and ε denotes the porosity of the medium. 
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Figure 1. Sketch of the physical system 

 
 

The hydrodynamic and hydromagnetic equations using the Darcy model and the assumptions as 

discussed by (Gupta et al., 2013) are 
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The density of nanofluid is denoted by   which is given as  

 

 1 ,p f           0 01 1 ,p T T                                                                       (5) 

 

and Maxwell’s equations are 

 

  2. ,Dd

dt



   

vh
H h                                                                                                                  (6) 

. 0, h                                                                                                                                           (7) 

 

where   is the resistivity of the fluid. In order to get the non-dimensional parameter thermal 

Rayleigh number the above equations are non-dimensionalized by using 
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where

 

( ) ,m m fk c      .
m f

c c             (8)

                                                                                               

After dropping the dashes, Eqs. (1)–(7) are transformed into 
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where 

1Pr :m  (the Prandtl number );  

    1 0( ) :A T h c B cN D T T D T      the modified diffusivity ratio; 

2Pr :   the magnetic Prandtl number ;  

:n m BL D  the Lewis number; 

 1( ) :a h c mR g dk T T     the Rayleigh number;  

     1 0 :B p f
N c c      

 
 the modified particle-density increment; 

 0 0 11 :m p mR gdk          the basic density Rayleigh number;  

   1 0 1:cn p mR gdk        the concentration Rayleigh number;  

and  2

1 4 :eQ H k   the Chandrasekhar number.                                                             (15) 

 

3. Initial Flow and Perturbation Equations 
The initial flow is supposed to be stationary and the temperature, nanoparticle fraction and 

pressure are assumed to vary in z direction only i.e. 

 

     I I I0, , , .T T z p p z z    q                                                                                        (16) 

 

The subscript ‘ I ’ represents the initial flow. Applying Eq.(16) to Eqs. (10)-(12) and integrating 

w.r.t. z , we get  

 

  I I 1 1 ,AAN T N z                                                                                                              (17) 
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As suggested by Buongiorno (2006), 
nL  is large and 

AN

 
is small. By neglecting the second and 

higher order terms, Eqs. (18) and (17) reduce to 

 

I 1 ,T z                                                                                                                                        (19) 

1 .z                                                                                                                                         (20) 

 

Let us apply very small perturbations (denoted by bar symbol) on the initial flow 
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with I I 1T z   . Applying (21) to Eqs. (9)–(14), linearizing and using Eqs. (19) and (20), we 

get 
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where 2 2 2 2 2

H x y      and p  is eliminated from Eqs.(23), (27) and (28) by introducing  

 v x u y       and  y xh x h y       .The system of differential Eqs. (22)-(28) will be 

used in further analysis by applying the methodology of superposition of basic modes and one 

term Galerkin residual approximation. 

 

 

4. Normal Mode Analysis and Galerkin Type Weighted Residual Method 
In the present study, we have used the methodology of superposition of basic modes in which the 

perturbed quantities are expressed as 

 

   , , , , , , ( ), ( ), ( ), ( ), ( ), ( ) exp( ),z x yw T h W z X z z Z z z K z il x il y nt                                    (29) 
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where xl
 
and

 
yl  are the wave numbers in two directions (horizontal and vertical) and n is

 
the 

growth rate. The linearized
 
equations after the process of elimination are 
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where /D d dz  and 
1

2 2 2( )x ya l l   is the resultant wave number. Eliminating K from Eqs. (30) 

and (31), we obtain 
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Now in order to solve Eqs. (32)-(34), Galerkin weighted residuals approach is adopted. Choice of 

the trial functions , andp p pW   depends on the relevant boundary conditions and we write  

 

1 1 1

, , .
N N N

p p p p p p

p p p

W A W B C
  
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For single term approximation, we put 1p  . After substituting Eq. (35) in Eqs. (32)-(34) and 

making use of orthogonality; we obtain a system of three equations in three unknowns 
1 1 1, , .A B C  

Elimination of these unknowns from the obtained set of equations gives the Eigen value equation. 

 

 

5. Results and Discussion 

5.1 Rigid-Rigid Boundaries 
Let us now consider that both the boundaries of the fluid layer are rigid. Therefore, the vanishing 

of the normal as well as horizontal components of the velocity to the rigid surface (no slip 

condition) leads to the boundary conditions 

 

0, 0, 0and 0,W DW       at both the boundaries 0, 0,K DK                                    (36) 

 

for perfectly conducting boundaries. The suitable trial functions satisfying this boundary 

condition are 

 
2 2

1 1 1(1 ), (1 ), (1 ).z z W z z z z                                                                                        (37) 

 

https://dx.doi.org/


International Journal of Mathematical, Engineering and Management Sciences                                 

Vol. 4, No. 1, 139–156, 2019 

https://dx.doi.org/10.33889/IJMEMS.2019.4.1-013 

145 

Using the approximation of single term Galerkin residual method and orthogonality, the eigen 

value equation becomes 
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Let us discuss the case of stationary convection by putting 0n  in Eq. (38). The expression for 

Rayleigh number for both rigid boundaries become 
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           (39) 

 

Critical Rayleigh number along with critical wave number is found by the condition 

0,adR da  numerically. In the absence of nanoparticles and magnetic field the value of critical 

wave number is 4.791ca   and critical Rayleigh number is 72.94. For oscillatory convection we 

put 0n i  in the Eigen value Eq. (38), and separate the imaginary and real parts to get an 

expression for ( )aR osc . This expression is quite lengthy so we have written it in Appendix B1; 

nevertheless the same is used to plot the graphs of ( )aR osc  for rigid-rigid boundaries.  

 

 

5.2 Rigid-Free Boundaries 
Let us now consider the lower boundary of the fluid to be rigid and the upper as free. The relevant 

boundary conditions on W are 

 

0, 0, at 0DW W z     for lower boundary,                                                                          (40) 
2 0, 0, 1D W W at z      for upper boundary.                                                                            (41) 

 

Trial function appropriate to these boundaries is 

 
2

1 (1 )(3 2z).W z z                                                                                                                     (42) 

 

By making use of single term Galerkin method and orthogonality, the Eigen value equation in the 

present case becomes 
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For stationary convection, the Eigen value Eq. (43) takes the form 
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                                                                                                                                                      (44) 

 

Equation (44) attains its minimum value when 3.97ca   and this minimum is 56.97 

(taking 0, 0cnQ R  ). For oscillatory modes, the expression for Rayleigh number is found as given 

in Appendix B2 and the graphs are plotted using the software Mathematica.  

 

Let us now analyze the critical values for alumina-water nanofluid ( 5000, 5n AL N   and 

fixed 0.1cnR  ) for the two types of boundaries. It has been observed that as the porosity increases 

there is a fall in the critical wave number and a predominant fall in the critical Rayleigh number 

for the two type of boundaries (Table 1). This means as the ratio of pore space to total space 

increases the nanofluid layer system gets strongly destabilized and it hastens the onset of 

instability. As we move from rigid-free boundaries to both rigid boundaries ca  shows a 

significant increase along with some increase in cR  i.e. ( ) ( )c both rigid c rigid freeR R   which means that 

the stability of the fluid layer system increases as we move from rigid-free and both-rigid 

boundaries. 

 

 

 

 

Table 1. Effect of  for alumina-water nano-fluid on 
ca  and 

cR  for 100, 0.1cnQ R  . 
 

 

 

 

 

 Rigid-Free Both Rigid 

  

ca  
cR  

ca  
cR  

0.2 18.67 9219.44 22.52 9798.28 

0.4 15.71 4773.57 18.95 5130.24 

0.6 14.20 3268.28 17.13 3540.69 

0.8 13.22 2506.61 15.95 2732.95 
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Table 2. Effect of Q for alumina-water nanofluid on 
ca  and 

cR for 0.7, 0.1.cnR    
 

 

 

In Table 2, ca and cR are considered for different values of Q  and for 0.7, 0.1cnR   . Both 

ca and cR show a tremendous rise with the rise in magnetic field parameter for the two type of 

boundary conditions. Further ca and cR exhibit an increase while moving from rigid-free to both 

rigid boundaries. This shows that magnetic field bears a strong influence on the nanofluid layer 

system by way of increasing its stability and delaying the onset of thermal convection. 

 

 

6. Numerical Results and Discussion 

To analyse the behavior of parameters like , , , ,cn n AR Q L N and  on the onset of convection; 

computations are carried out using Eqs. (39) and (44) for stationary convection for both-rigid and 

rigid-free boundaries, respectively. To carry out the computations in respect of oscillatory 

motions, expressions for  ( )a both rigid
R osc  and  ( )a rigid free

R osc


(given in Appendix B1 and 

Appendix B2 as B.1.1 and B.1.2) are used for rigid-rigid and rigid-free boundaries, respectively. 

The curves representing the variation of ( )aR stat  and ( )aR osc w.r.t the wave number ‘ a ’ for 

fixed values of other parameters have been sketched. The fixed values of various parameters are 

taken as 1 2Pr 1, Pr 0.01,  4, 100, 50, 4,cn n AR L Q N    0.7, 1   . By changing the value of 

one parameter the effect of that particular parameter can be examined on the convection problem. 

 

Figures 2-11 show the neutral stability curves for non-oscillatory and oscillatory motions in 

porous medium for bottom heavy configuration of nanoparticles. Figure 2 is a plot of 

( )aR stat and Figure 3 is a plot of (osc)aR  versus wave number for 4,7 and 10cnR  . It is seen that 

   a aboth rigid rigid free
R R


 for both types of convections. If we compare Figures 2 and 3 it is easy to 

recognize that ( ) (osc)a aR stat R for fixed ‘ a ’ that means the mode of heat transfer is through 

oscillatory motions instead of stationary convection. Figure 2 presents a clear picture of the 

significant increase in ( )aR stat with the rise in cnR whereas there is no significant increase 

in ( )aR osc (Figure 3). Thus the increase in the concentration of nanoparticles makes the stationary 

convection much more stable as compared to over stable convection (Figure 3) when particle 

density decreases upward.  

 

 

 

 Rigid-Free Both Rigid 

Q  

ca  
cR  

ca  
cR  

0 3.97 770.97 4.791 786.94 

100 13.67 2834.25 16.49 3080.77 

500 20.41 10132.62 24.61 10884.2 

1000 24.26 19014.7 29.24 20292.3 
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Figure 2. Influence of concentration Rayleigh number on ( )aR stat  for 4,7 and 10cnR  for two different 

boundaries 

 

 

 

 
 

Figure 3. Influence of concentration Rayleigh number on (osc)aR  for 4,7 and 10cnR   for two different 

boundaries 

 
 

Figures 4-5 correspond to Rayleigh numbers ( )aR stat  and (osc)aR , respectively, 

for 50,100 and 150Q . Both these figures show that there is a remarkable enhancement in the 
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values of ( )aR stat as well as (osc)aR
 
with the increase in Chandrasekhar number. Thus, the 

application of magnetic field postpones the onset of convection and this delaying effect grows in 

magnitude with the rise in the magnetic field. Further, it is interpreted from the figures that the 

curves showing the effect of the magnetic field for rigid-free boundaries, lies below the curves for 

both rigid boundaries. The fluid layer confined between both rigid boundaries is more stable as 

compared to rigid-free boundaries. Figure 4-5 show that ( ) (osc)a aR stat R  for all values of the 

Chandrasekhar number maintaining the fact that oscillatory motions prevail the system. 

 

 
 

Figure 4. Influence of magnetic field on ( )aR stat  for 50,100Q and 150  for two different boundaries 

 

 

 
Figure 5. Influence of magnetic field on (osc)aR  for 50,100Q and 150  for two different boundaries. 
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Figure 6. Influence of porosity on ( )aR stat  for 0.5,0.6  and 0.7 for two different boundaries 

 

 

 

 

 

 
 

Figure 7. Influence of porosity on (osc)aR  for 0.5,0.6  and 0.7 for two different boundaries 
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Figure 8. Influence of Lewis number on ( )aR stat  for 100,200nL  and 300 for three different boundaries 

 

 

 

 

 

 
 

Figure 9. Influence of Lewis number on (osc)aR for 100,200nL  and 300 for three different boundaries 
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Figures 6-7 show the variation of Rayleigh number ( )aR stat  and (osc)aR  for 0.5,0.6 and 0.7  , 

respectively for rigid-rigid and rigid-free boundaries. As shown for alumina-water nanofluid, 

increase in porosity hastens the onset of oscillatory as well as non-oscillatory convection.  

 

Figures 8-9 show the impact of Lewis number on the convection problem for 

100,200 and 300nL  . It has been observed that with the rise in nL , ( )aR stat  increases 

predominantly and (osc)aR does not show any significant change. Both rigid boundaries are more 

stable as compared to rigid-free boundaries. 

 

 

 

 

 

 
 

Figure 10. Influence of modified diffusivity ratio on ( )aR stat  and (osc)aR  for 2,5AN  and 9 for three 

different boundaries 
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Figure 11. Influence of heat capacity ratio on ( )aR stat and (osc)aR  for 1,1.5 and 2  for three different 

boundaries 

 
 

Figure 10 depicts the variation of ( )aR stat
 
and

 
(osc)aR  for 2,5 and 9AN   for the two boundary 

conditions. In addition to the observation that the mode of instability is overstability, it is found 

that ( )aR stat and (osc)aR  are independent of the effect of diffusivity ratio. Figure 11 corresponds 

to ( )aR stat and
 

(osc)aR for 1,1.5 and 2  . ( )aR stat is independent of the heat capacity ratio and 

(osc)aR  slightly rises with the rise in   (not seen in graphs). This is due to the fact that Eqs. 

(37), (52) are (57) are independent of the heat capacity ratio. The convection sets in through 

oscillatory motions and (osc)aR  for both rigid boundaries is much more than that for rigid-free 

boundaries.  

 

 

8. Conclusions 
The present article investigates Rayleigh-Bénard convection for nanofluids under the influence of 

magnetic field for more realistic boundary conditions: rigid-free and rigid-rigid. The solution of 

the eigen value problem is found in terms of Rayleigh number by implementing the technique of 

normal modes and weighted residual Galerkin approximation. It has been found that the mode of 

heat transfer is through oscillatory motions. It is expected as buoyancy forces are acting 

oppositely. The critical values of wave number and Rayleigh number are found for alumina-water 

nanofluid. It is observed that cR shows a predominant fall with the increase in the ratio of pore 

space to total space for all the boundaries. As one moves from rigid-free boundaries to both rigid 

boundaries ca  shows an appreciable increase along with moderate increase in cR . Both ca  and cR  

exhibit a substantial increase as the Lorentz force is increased which shows that magnetic field 

strongly delays the onset of thermal convection. When magnetic field and nanoparticles are not 

present in the nanofluid layer, ca  and cR  for rigid-free boundaries are found to be 3.97 and 56.97, 

respectively, which lie below the critical wave number and critical Rayleigh number for both 
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rigid boundaries ( 4.791,ca  72.94cR  ) for fixed value of porosity 0.7. The nanofluid layer system 

with both rigid boundaries is comparatively stable than rigid-free boundaries. To analyse the 

behavior of parameters like , , , ,cn n AR Q L N and   computations are carried out using the 

software Mathematica to find ( )aR stat and (osc)aR . When the nanoparticle density decreases 

upward; the concentration Rayleigh number makes the stationary convection much more stable as 

compared to over stable motions. Lewis number is found to have dual character stabilizing for 

stationary convection and destabilizing for the oscillatory mode. It is also found that ( )aR stat  and 

(osc)aR are independent of the diffusivity ratio. As far as the effect of heat capacity ratio is 

concerned ( )aR stat is independent of it whereas (osc)aR  shows a slight rise with the rise in heat 

capacity ratio. 

 

 

 

Appendix B1: Expression for (osc)aR  for Rigid-rigid Boundaries 

Separating the real and imaginary parts of Eq.(52) after putting 0n i  , we get an expression 

of (osc)aR for the rigid-rigid boundaries as 

 
2 2 4

1 1 2 1

4 2 2

2 1 2 1 2

2 4 4 4 6

2 1 2 2 1

(osc) 141120 Pr 17472 Pr 270 Pr 336 Pr

27 Pr 141120 Pr 33600Pr 20832 Pr 9520Pr

270 Pr 952 Pr 896Pr 27 Pr 28 Pr

a n n n cn n

n cn n n

A Acn n cn n

R L Q L Qa L R a L Qa

L R a L L a a

N R a L a a N R a L a

   

    

    

   

    

    



 

6 2 2 2 2 2 4 2

2 1 1 1 1

4 2 2 2 2 4 2 6 2

1 1 1 1 1

1
2 2 2 2 2 2

2 2 1 2 1 2

28Pr 141120Pr 17472Pr 252 Pr 336Pr

27 Pr 141120Pr 20832Pr 952Pr 28Pr

336 Pr 28 Pr 9 (28 Pr 30Pr 3 Pr 3Pr ) ,

n cn

n cn

n n n n

a Q Qa L R a Qa

L R a a a a

L L a a L L a a

    

    

  


   

    

       

 

                                                                                                                                                 (B.1.1) 

 

where 
2

2 2 1 32

1

4
,

2

X X X X

X


  
 which is obtained by eliminating ( )aR osc  between real and 

imaginary parts of the eigen value Eq. (52) and 1 2 3, ,X X X  are the coefficients of the biquadratic 

equation 4 2

1 2 3 0X X X    . 

 

 

Appendix B2: Expression for (osc)aR  for Rigid-Free Boundaries 

In this case the eigen value Eq. (57) gives the expression for (osc)aR  by separating real and 

imaginary parts as 
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2 2 4

1 1 2 1

4 2

2 1 2 1

2 2 4 4

2 2 1 2

2

(osc) 1270080 Pr 187488 Pr 5070 Pr 6048 Pr

507 Pr 1270080 Pr 604800Pr 247968 Pr

174160Pr 5070 Pr 17416 Pr 16688Pr

507 Pr

a n n n cn n

n cn n n

A cn n

A cn

R L Q L Qa L R a L Qa

L R a L L a

a N R a L a a

N R a

   

   

   

   

    

  



 

4 6 6 2

1 2 1

2 2 2 2 4 2 4 2

1 1 1 1

2 2 2 4 2 6 2

1 1 1 1

2 2 2 2

2 2

532 Pr 532Pr 1270080Pr

187488Pr 4914 Pr 6048Pr 507 Pr

1270080Pr 247968Pr 17416Pr 532Pr

6048 Pr 532 Pr 36 (126Pr

n

n cn n cn

n n n

L a a Q

Qa L R a Qa L R a

a a a

L L a L a

   

   

   

  

  

   

   

  

1
2 2

1 2 1 2130Pr 13Pr 13Pr ) ,a a


   
 

 

                                                                                                                                                 (B.1.2) 

 

where 
2

2 2 1 32

1

4
,

2

X X X X

X


  
  is obtained in the same manner as for rigid-rigid boundaries 

and 1 2 3, ,X X X  are the coefficients of the biquadratic equation 4 2

1 2 3 0X X X    . 
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